Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies

Identifieur interne : 006459 ( Main/Exploration ); précédent : 006458; suivant : 006460

Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies

Auteurs : A. Charbonnier [France] ; C. Combet ; M. Daniel ; S. Funk [États-Unis] ; J. A. Hinton [Royaume-Uni] ; D. Maurin [France] ; C. Power [Australie] ; J. I. Read [Suisse] ; S. Sarkar [Royaume-Uni] ; M. G. Walker [Royaume-Uni, États-Unis] ; M. I. Wilkinson

Source :

RBID : ISTEX:2BCCB1150A2D81AAD365269709A34F07AA408A28

Descripteurs français

English descriptors

Abstract

Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical J‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J‐factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne Fermi‐Large Area Telescope (Fermi‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γprior≤ 1 provides J‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J‐factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half‐light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the Fermi‐LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.

Url:
DOI: 10.1111/j.1365-2966.2011.19387.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
<author>
<name sortKey="Charbonnier, A" sort="Charbonnier, A" uniqKey="Charbonnier A" first="A." last="Charbonnier">A. Charbonnier</name>
</author>
<author>
<name sortKey="Combet, C" sort="Combet, C" uniqKey="Combet C" first="C." last="Combet">C. Combet</name>
</author>
<author>
<name sortKey="Daniel, M" sort="Daniel, M" uniqKey="Daniel M" first="M." last="Daniel">M. Daniel</name>
</author>
<author>
<name sortKey="Funk, S" sort="Funk, S" uniqKey="Funk S" first="S." last="Funk">S. Funk</name>
</author>
<author>
<name sortKey="Hinton, J A" sort="Hinton, J A" uniqKey="Hinton J" first="J. A." last="Hinton">J. A. Hinton</name>
</author>
<author>
<name sortKey="Maurin, D" sort="Maurin, D" uniqKey="Maurin D" first="D." last="Maurin">D. Maurin</name>
</author>
<author>
<name sortKey="Power, C" sort="Power, C" uniqKey="Power C" first="C." last="Power">C. Power</name>
</author>
<author>
<name sortKey="Read, J I" sort="Read, J I" uniqKey="Read J" first="J. I." last="Read">J. I. Read</name>
</author>
<author>
<name sortKey="Sarkar, S" sort="Sarkar, S" uniqKey="Sarkar S" first="S." last="Sarkar">S. Sarkar</name>
</author>
<author>
<name sortKey="Walker, M G" sort="Walker, M G" uniqKey="Walker M" first="M. G." last="Walker">M. G. Walker</name>
</author>
<author>
<name sortKey="Wilkinson, M I" sort="Wilkinson, M I" uniqKey="Wilkinson M" first="M. I." last="Wilkinson">M. I. Wilkinson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2BCCB1150A2D81AAD365269709A34F07AA408A28</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2011.19387.x</idno>
<idno type="url">https://api.istex.fr/document/2BCCB1150A2D81AAD365269709A34F07AA408A28/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000856</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000856</idno>
<idno type="wicri:Area/Istex/Curation">000856</idno>
<idno type="wicri:Area/Istex/Checkpoint">000879</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000879</idno>
<idno type="wicri:doubleKey">0035-8711:2011:Charbonnier A:dark:matter:profiles</idno>
<idno type="wicri:Area/Main/Merge">006836</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:12-0016424</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001739</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004770</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001C13</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001C13</idno>
<idno type="wicri:doubleKey">0035-8711:2011:Charbonnier A:dark:matter:profiles</idno>
<idno type="wicri:Area/Main/Merge">007064</idno>
<idno type="wicri:Area/Main/Curation">006459</idno>
<idno type="wicri:Area/Main/Exploration">006459</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future 
<emph>
<span>
<hi rend="italic">γ</hi>
</span>
</emph>
‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
<author>
<name sortKey="Charbonnier, A" sort="Charbonnier, A" uniqKey="Charbonnier A" first="A." last="Charbonnier">A. Charbonnier</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Combet, C" sort="Combet, C" uniqKey="Combet C" first="C." last="Combet">C. Combet</name>
<affiliation>
<wicri:noCountry code="subField">7RH</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Daniel, M" sort="Daniel, M" uniqKey="Daniel M" first="M." last="Daniel">M. Daniel</name>
<affiliation>
<wicri:noCountry code="subField">3LE</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Funk, S" sort="Funk, S" uniqKey="Funk S" first="S." last="Funk">S. Funk</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hinton, J A" sort="Hinton, J A" uniqKey="Hinton J" first="J. A." last="Hinton">J. A. Hinton</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Maurin, D" sort="Maurin, D" uniqKey="Maurin D" first="D." last="Maurin">D. Maurin</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05</wicri:regionArea>
<wicri:noRegion>75252 Paris Cedex 05</wicri:noRegion>
<wicri:noRegion>75252 Paris Cedex 05</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026 Grenoble</wicri:regionArea>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris</wicri:regionArea>
<placeName>
<settlement type="city">Paris</settlement>
<region type="région" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
<orgName type="university">Université Pierre-et-Marie-Curie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Power, C" sort="Power, C" uniqKey="Power C" first="C." last="Power">C. Power</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009</wicri:regionArea>
<wicri:noRegion>WA 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Read, J I" sort="Read, J I" uniqKey="Read J" first="J. I." last="Read">J. I. Read</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Physics, Institute for Astronomy, ETH Zürich, Wolfgang‐Pauli‐Strasse 16, CH‐8093 Zürich</wicri:regionArea>
<wicri:noRegion>CH‐8093 Zürich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sarkar, S" sort="Sarkar, S" uniqKey="Sarkar S" first="S." last="Sarkar">S. Sarkar</name>
<affiliation wicri:level="4">
<orgName type="university">Université d'Oxford</orgName>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walker, M G" sort="Walker, M G" uniqKey="Walker M" first="M. G." last="Walker">M. G. Walker</name>
<affiliation wicri:level="4">
<orgName type="university">Université de Cambridge</orgName>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Wilkinson, M I" sort="Wilkinson, M I" uniqKey="Wilkinson M" first="M. I." last="Wilkinson">M. I. Wilkinson</name>
<affiliation>
<wicri:noCountry code="subField">7RH</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">418</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1526">1526</biblScope>
<biblScope unit="page" to="1556">1556</biblScope>
<biblScope unit="page-count">31</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-12-11">2011-12-11</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular dimension</term>
<term>Angular extent</term>
<term>Angular resolution</term>
<term>Angular size</term>
<term>Aniso</term>
<term>Anisotropy</term>
<term>Annihilating particle</term>
<term>Annihilation</term>
<term>Annihilation signal</term>
<term>Annihilation spectrum</term>
<term>Approximate formulae</term>
<term>Astrophysical</term>
<term>Astrophysical factor</term>
<term>Bergstr</term>
<term>Binning</term>
<term>Blue line</term>
<term>Bottom panel</term>
<term>Bringmann</term>
<term>Carina</term>
<term>Cent containment radius</term>
<term>Centre</term>
<term>Charbonnier</term>
<term>Cherenkov</term>
<term>Classical dsph</term>
<term>Classical dsphs</term>
<term>Clump</term>
<term>Constant velocity anisotropy</term>
<term>Constraint</term>
<term>Conversion factors</term>
<term>Cored</term>
<term>Cosmological</term>
<term>Cosmological simulations</term>
<term>Critical angle</term>
<term>Current data</term>
<term>Cusp slope</term>
<term>Cusped</term>
<term>Cuspy</term>
<term>Dark matter</term>
<term>Dark matter annihilation</term>
<term>Detectability</term>
<term>Detection sensitivity</term>
<term>Diemand</term>
<term>Dispersion</term>
<term>Distribution functions</term>
<term>Draco</term>
<term>Dsph</term>
<term>Dsph centre</term>
<term>Dsph distance</term>
<term>Dsphs</term>
<term>Dwarf galaxies</term>
<term>Dwarf spheroidal galaxies</term>
<term>Dynamics</term>
<term>Einasto</term>
<term>Energy range</term>
<term>Fermi</term>
<term>Fornax</term>
<term>Frenk</term>
<term>Galactic</term>
<term>Galactic centers</term>
<term>Galactic centre</term>
<term>Galaxy</term>
<term>Gamma radiation</term>
<term>Generic</term>
<term>Generic dsph</term>
<term>Generic dsphs</term>
<term>Gilmore</term>
<term>Global parameters</term>
<term>Halo</term>
<term>Halo model</term>
<term>Hess</term>
<term>Inner parts</term>
<term>Inner slope</term>
<term>Integration angle</term>
<term>Integration angles</term>
<term>Integration region</term>
<term>Irwin hatzidimitriou</term>
<term>Jeans analysis</term>
<term>Jsubcl</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Kinematics</term>
<term>Kuhlen</term>
<term>Lavalle</term>
<term>Lifetime</term>
<term>Lines show</term>
<term>Luminosity</term>
<term>Markov chain</term>
<term>Mass to light ratio</term>
<term>Mateo</term>
<term>Mcmc</term>
<term>Mcmc analysis</term>
<term>Measurement uncertainty</term>
<term>Median</term>
<term>Median value</term>
<term>Median values</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Model parameters</term>
<term>Modelling</term>
<term>Monte Carlo methods</term>
<term>Monthly notices</term>
<term>Navarro</term>
<term>Numerical integration</term>
<term>Observatory</term>
<term>Olszewski</term>
<term>Other dsphs</term>
<term>Outer slope</term>
<term>Parameter</term>
<term>Particle mass</term>
<term>Particle model</term>
<term>Particle models</term>
<term>Particle physics factor</term>
<term>Photon</term>
<term>Phys</term>
<term>Pieri</term>
<term>Power law</term>
<term>Radial dependence</term>
<term>Radius</term>
<term>Reference model</term>
<term>Robust</term>
<term>Rvir</term>
<term>Scale radius</term>
<term>Sextans</term>
<term>Simulation</term>
<term>Small integration angles</term>
<term>Small radii</term>
<term>Smooth component</term>
<term>Smooth contribution</term>
<term>Smooth distribution</term>
<term>Solid angle</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Spatial distribution</term>
<term>Spherical symmetry</term>
<term>Standard model</term>
<term>Stellar</term>
<term>Stellar density</term>
<term>Stellar kinematic data</term>
<term>Strigari</term>
<term>Subclump</term>
<term>Subclump contribution</term>
<term>Subclump distribution</term>
<term>Subclump parameters</term>
<term>Subclumps</term>
<term>Substructure</term>
<term>Supersymmetric field theory</term>
<term>Symbols show</term>
<term>Total number</term>
<term>True value</term>
<term>Ultrafaint dsphs</term>
<term>Upper limit</term>
<term>Ursa</term>
<term>Velocity dispersion</term>
<term>Velocity dispersions</term>
<term>Velocity distribution</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Angle critique</term>
<term>Centre galactique</term>
<term>Chaîne Markov</term>
<term>Cinématique</term>
<term>Dimension angulaire</term>
<term>Durée vie</term>
<term>Dynamique</term>
<term>Détectabilité</term>
<term>Galaxies naines</term>
<term>Galaxies sphéroïdales naines</term>
<term>Incertitude mesure</term>
<term>Loi puissance</term>
<term>Matière sombre</term>
<term>Modèle particule</term>
<term>Modèle standard</term>
<term>Méthode Monte Carlo</term>
<term>Rapport masse luminosité</term>
<term>Rayonnement gamma</term>
<term>Théorie champ supersymétrique</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Angular extent</term>
<term>Angular resolution</term>
<term>Angular size</term>
<term>Aniso</term>
<term>Anisotropy</term>
<term>Annihilating particle</term>
<term>Annihilation</term>
<term>Annihilation signal</term>
<term>Annihilation spectrum</term>
<term>Approximate formulae</term>
<term>Astrophysical</term>
<term>Astrophysical factor</term>
<term>Bergstr</term>
<term>Binning</term>
<term>Blue line</term>
<term>Bottom panel</term>
<term>Bringmann</term>
<term>Carina</term>
<term>Cent containment radius</term>
<term>Centre</term>
<term>Charbonnier</term>
<term>Cherenkov</term>
<term>Classical dsph</term>
<term>Classical dsphs</term>
<term>Clump</term>
<term>Constant velocity anisotropy</term>
<term>Constraint</term>
<term>Conversion factors</term>
<term>Cored</term>
<term>Cosmological</term>
<term>Cosmological simulations</term>
<term>Current data</term>
<term>Cusp slope</term>
<term>Cusped</term>
<term>Cuspy</term>
<term>Dark matter</term>
<term>Dark matter annihilation</term>
<term>Detectability</term>
<term>Detection sensitivity</term>
<term>Diemand</term>
<term>Dispersion</term>
<term>Distribution functions</term>
<term>Draco</term>
<term>Dsph</term>
<term>Dsph centre</term>
<term>Dsph distance</term>
<term>Dsphs</term>
<term>Dwarf spheroidal galaxies</term>
<term>Einasto</term>
<term>Energy range</term>
<term>Fermi</term>
<term>Fornax</term>
<term>Frenk</term>
<term>Galactic</term>
<term>Galactic centre</term>
<term>Galaxy</term>
<term>Generic</term>
<term>Generic dsph</term>
<term>Generic dsphs</term>
<term>Gilmore</term>
<term>Global parameters</term>
<term>Halo</term>
<term>Halo model</term>
<term>Hess</term>
<term>Inner parts</term>
<term>Inner slope</term>
<term>Integration angle</term>
<term>Integration angles</term>
<term>Integration region</term>
<term>Irwin hatzidimitriou</term>
<term>Jeans analysis</term>
<term>Jsubcl</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Kuhlen</term>
<term>Lavalle</term>
<term>Lines show</term>
<term>Luminosity</term>
<term>Mateo</term>
<term>Mcmc</term>
<term>Mcmc analysis</term>
<term>Median</term>
<term>Median value</term>
<term>Median values</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Model parameters</term>
<term>Modelling</term>
<term>Monthly notices</term>
<term>Navarro</term>
<term>Numerical integration</term>
<term>Observatory</term>
<term>Olszewski</term>
<term>Other dsphs</term>
<term>Outer slope</term>
<term>Parameter</term>
<term>Particle mass</term>
<term>Particle model</term>
<term>Particle physics factor</term>
<term>Photon</term>
<term>Phys</term>
<term>Pieri</term>
<term>Radial dependence</term>
<term>Radius</term>
<term>Reference model</term>
<term>Robust</term>
<term>Rvir</term>
<term>Scale radius</term>
<term>Sextans</term>
<term>Simulation</term>
<term>Small integration angles</term>
<term>Small radii</term>
<term>Smooth component</term>
<term>Smooth contribution</term>
<term>Smooth distribution</term>
<term>Solid angle</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Spatial distribution</term>
<term>Spherical symmetry</term>
<term>Stellar</term>
<term>Stellar density</term>
<term>Stellar kinematic data</term>
<term>Strigari</term>
<term>Subclump</term>
<term>Subclump contribution</term>
<term>Subclump distribution</term>
<term>Subclump parameters</term>
<term>Subclumps</term>
<term>Substructure</term>
<term>Symbols show</term>
<term>Total number</term>
<term>True value</term>
<term>Ultrafaint dsphs</term>
<term>Upper limit</term>
<term>Ursa</term>
<term>Velocity dispersion</term>
<term>Velocity dispersions</term>
<term>Velocity distribution</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical J‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J‐factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne Fermi‐Large Area Telescope (Fermi‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γprior≤ 1 provides J‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J‐factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half‐light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the Fermi‐LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Royaume-Uni</li>
<li>Suisse</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
<li>Auvergne-Rhône-Alpes</li>
<li>Californie</li>
<li>Massachusetts</li>
<li>Oxfordshire</li>
<li>Rhône-Alpes</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Cambridge</li>
<li>Grenoble</li>
<li>Oxford</li>
<li>Paris</li>
</settlement>
<orgName>
<li>Université Pierre-et-Marie-Curie</li>
<li>Université d'Oxford</li>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Combet, C" sort="Combet, C" uniqKey="Combet C" first="C." last="Combet">C. Combet</name>
<name sortKey="Daniel, M" sort="Daniel, M" uniqKey="Daniel M" first="M." last="Daniel">M. Daniel</name>
<name sortKey="Wilkinson, M I" sort="Wilkinson, M I" uniqKey="Wilkinson M" first="M. I." last="Wilkinson">M. I. Wilkinson</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Charbonnier, A" sort="Charbonnier, A" uniqKey="Charbonnier A" first="A." last="Charbonnier">A. Charbonnier</name>
</region>
<name sortKey="Maurin, D" sort="Maurin, D" uniqKey="Maurin D" first="D." last="Maurin">D. Maurin</name>
<name sortKey="Maurin, D" sort="Maurin, D" uniqKey="Maurin D" first="D." last="Maurin">D. Maurin</name>
<name sortKey="Maurin, D" sort="Maurin, D" uniqKey="Maurin D" first="D." last="Maurin">D. Maurin</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Funk, S" sort="Funk, S" uniqKey="Funk S" first="S." last="Funk">S. Funk</name>
</region>
<name sortKey="Walker, M G" sort="Walker, M G" uniqKey="Walker M" first="M. G." last="Walker">M. G. Walker</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Hinton, J A" sort="Hinton, J A" uniqKey="Hinton J" first="J. A." last="Hinton">J. A. Hinton</name>
</noRegion>
<name sortKey="Sarkar, S" sort="Sarkar, S" uniqKey="Sarkar S" first="S." last="Sarkar">S. Sarkar</name>
<name sortKey="Walker, M G" sort="Walker, M G" uniqKey="Walker M" first="M. G." last="Walker">M. G. Walker</name>
<name sortKey="Walker, M G" sort="Walker, M G" uniqKey="Walker M" first="M. G." last="Walker">M. G. Walker</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Power, C" sort="Power, C" uniqKey="Power C" first="C." last="Power">C. Power</name>
</noRegion>
</country>
<country name="Suisse">
<noRegion>
<name sortKey="Read, J I" sort="Read, J I" uniqKey="Read J" first="J. I." last="Read">J. I. Read</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006459 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006459 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2BCCB1150A2D81AAD365269709A34F07AA408A28
   |texte=   Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024